Nitric oxide and histamine signal attempts to swallow: A component of learning that food is inedible in Aplysia.
نویسندگان
چکیده
Memory that food is inedible in Aplysia arises from training requiring three contingent events. Nitric oxide (NO) and histamine are released by a neuron responding to one of these events, attempts to swallow food. Since NO release during training is necessary for subsequent memory and NO substitutes for attempts to swallow, it was suggested that NO functions during training as a signal of attempts to swallow. However, it has been shown that NO may also be released in other contexts affecting feeding, raising the possibility that its role in learning is unrelated to signaling attempts to swallow. We confirmed that NO during learning signals attempts to swallow, by showing that a variety of behavioral effects on feeding of blocking or adding NO do not affect learning and memory that a food is inedible. In addition, histamine had effects similar to NO on learning that food is inedible, as expected if the transmitters are released together when animals attempt to swallow. Blocking histamine during training blocked long-term memory, and exogenous histamine substituted for attempts to swallow. NO also substituted for histamine during training. Histamine at concentrations relevant to learning activates neuron metacerebral cell (MCC). However, MCC activity is not a good monitor of attempts to swallow during training, since the neuron responds equally well to other stimuli. These findings support and extend the hypothesis that NO and histamine signal efforts to swallow during learning, acting on targets other than the MCC that specifically respond to attempts to swallow.
منابع مشابه
Nitric oxide signals that aplysia have attempted to eat, a necessary component of memory formation after learning that food is inedible.
Inhibiting nitric oxide (NO) synthesis during learning that food is inedible in Aplysia blocks subsequent memory formation. To gain insight into the function of NO transmission during learning we tested whether blocking NO synthesis affects aspects of feeding that are expressed both in a nonlearning context and during learning. Inhibiting NO synthesis with L-NAME and blocking guanylyl cyclase w...
متن کاملNitric oxide is necessary for multiple memory processes after learning that a food is inedible in aplysia.
Nitric oxide (NO) signaling was inhibited via N(omega)-nitro-L-arginine methyl ester (L-NAME) during and after training Aplysia that a food is inedible. Treating animals with L-NAME 10 min before the start of training blocked the formation of three separable memory processes: (1) short-term, (2) intermediate-term, and (3) long-term memory. The treatment also attenuated, but did not block, a fou...
متن کاملIdentification of the neural pathway for reinforcement of feeding when Aplysia learn that food is inedible.
Bilateral sectioning of the esophageal nerves that innervate the gut of Aplysia was found to have profound effect on response decrement to inedible food: Time to criterion for cessation of feeding was elevated, no memory of the decrement was present 24 hr after training, and motor patterning during training was altered. The parametric features of response decrement to sustained lip stimulation ...
متن کاملTraining with inedible food in Aplysia causes expression of C/EBP in the buccal but not cerebral ganglion.
Training with inedible food in Aplysia increased expression of the transcription factor C/EBP in the buccal ganglia, which primarily have a motor function, but not in the cerebral or pleural ganglia. C/EBP mRNA increased immediately after training, as well as 1-2 h later. The increased expression of C/EBP protein lagged the increase in mRNA. Stimulating the lips and inducing feeding responses d...
متن کاملNitric oxide and histamine induce neuronal excitability by blocking background currents in neuron MCC of Aplysia.
Nitric oxide (NO) and histamine are important neurotransmitters and neuromodulators. We investigated their ability to modulate the membrane ionic currents and excitability of the metacerebral cell (MCC) of Aplysia using voltage clamp techniques. MCC is a serotonergic modulator of the feeding neural circuit. It receives powerful long-lasting excitatory synaptic input mediated by NO and histamine...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Learning & memory
دوره 17 1 شماره
صفحات -
تاریخ انتشار 2010